Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Niels Thorup, ${ }^{\text {a }}$ *

Jørgen Eskildsen ${ }^{\mathbf{b}} \ddagger$ and Jørn B. Christensen ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Technical University of Denmark, Kemitorvet, DTU-207, DK-2800 Kgs. Lyngby, Denmark, and ${ }^{\text {b }}$ Department of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2100 Copenhagen \varnothing, Denmark
\# Present address: Acadia Pharmaceuticals AB PA, Hanssonsväg 35, S-20512 Malmö, Sweden.

Correspondence e-mail: nt@kemi.dtu.dk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.099$
Data-to-parameter ratio $=11.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Acenaphtho[1,2-b]pyrazine

In the crystal structure of acenaphtho[1,2-b]pyrazine (or 7,10diazafluoranthene), $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{2}$, the molecule has crystallographic m symmetry, but the observed symmetry is very close to $m m 2$. The structure contains dimers of face-to-face antiparallel molecules.

Comment

Fluoranthene forms a series of 2:1 radical cation salts with anions such as $\mathrm{PF}_{6}{ }^{-}$and $\mathrm{AsF}_{6}{ }^{-}$(Enkelmann et al., 1982). 10cAzoniafluoranthene forms a $1: 1$ radical cation salt with the anion PF_{6}^{-}(Boubekeur et al., 1989). The present molecule, 7,10-diazafluoranthene or acenaphtho[1,2-b]pyrazine, (I), is of interest as a modified fluoranthene with nitrogen substitution along the periphery.

(I)

The molecule has crystallographic m symmetry. As expected, the observed symmetry is very close to $m m 2\left(C_{2 v}\right)$. The structure contains dimers of face-to-face antiparallel

Figure 1
The molecular structure of acenaphtho[1,2-b]pyrazine with the atomic numbering scheme. The symbol A refers to symmetry code (i) in Table 1. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Received 2 March 2006 Accepted 3 March 2006
\qquad

Figure 2
Packing viewed approximately along the b-axis direction. Dashed lines represent the weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond detailed in Table 2.
molecules. The interplanar distance within a dimer is 3.417 (2) \AA. The dimers probably interact via a weak C$\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (see Table 2). The interacting dimers are stacked orthogonally to each other (see Fig. 2). The intermolecular attractions appear to be rather weak, which is in good accordance with the observed low melting point ($c a$ 419 K).

Experimental

Acenaphtho[1,2-b]pyrazine was prepared as previously reported by Eskildsen \& Christensen (2004). Crystals for X-ray analysis were obtained by slow evaporation of a solution in ethanol of a sublimed sample.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{2}$
$M_{r}=204.22$
Tetragonal, $P 4_{2} / m b c$
$a=11.9243(2) \AA$
$c=14.4040(3) \AA$
$V=2048.09(6) \AA^{3}$
$Z=8$
$D_{x}=1.325 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.900, T_{\text {max }}=0.995$
17778 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 7188 reflections
$\theta=2.4-26.4^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, yellow
$0.30 \times 0.09 \times 0.06 \mathrm{~mm}$

1088 independent reflections
910 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-14 \rightarrow 14$
$k=-14 \rightarrow 14$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043
$$

$w R\left(F^{2}\right)=0.099$
$S=1.14$
1088 reflections
93 parameters
All H -atom parameters refined

$$
\begin{aligned}
& \begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.041 P)^{2}\right. \\
& +0.8729 P]
\end{aligned} \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.27 \mathrm{e}_{\mathrm{\circ}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.0035 \text { (6) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.3347(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.424(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.3489(18)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.382(2)$
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.428(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.4251(18)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.4734(19)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.406(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.376(2)$	$\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$1.392(3)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.4179(17)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$113.94(12)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$122.91(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$122.76(8)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.27(15)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$128.87(12)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$115.83(10)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2$	$108.36(8)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 5^{\mathrm{i}}$	$128.3(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$119.34(13)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$123.81(9)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$135.20(13)$	$\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 7-\mathrm{C} 2$	$112.38(17)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$105.45(12)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$123.29(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.84(14)$		

Symmetry code: (i) $x, y,-z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.982(17)$	$2.605(16)$	$3.3663(19)$	$134.5(12)$

Symmetry code: (ii) $-y, x,-z+\frac{1}{2}$.
Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Sheldrick, 2001) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

References

Boubekeur, K., Fourmigue, M., Batail, P. \& Bechgaard. K. (1989). Acta Cryst. C45, 1636-1637.
Enkelmann, V. Morra, B. S., Kröhnke, C., Wegner, G. \& Heinze, J. (1982). Chem. Phys. 66, 303-313.
Eskildsen, J. \& Christensen, J. (2004). Molbank, 2004, M386.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). $S A D A B S$. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Versions 4.05. Siemens AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

